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We consider the decomposition of a teflon thermal protective coating along the generatrix
of a blunted solid of revolution for various Mach numbers and pressures of the incident
flow. On the basis of preliminary parametric study of the equations of a laminar boundary
layer with pressure gradient, calculation of the teflon decomposition parameters is reduced
to solution of a system of nonlinear and transcendental equations. It is shown that the
temperature distribution and decomposition rate along the generatrix of the solid of re-
volution have a monotonic character, and that the effective enthalpy of the material remains
constant along the body. A simple approximate formula is proposed for calculation of the
teflon decomposition rate.

1. Teflon can serve as a strongly ablative low enthalpy coating material, which almost completely
blocks convective thermal flux because of the draft of material in the vapor state into the boundary layer,
It is assumed that decomposition does not disturb the laminar flow mode in the boundary layer.

A study of teflon decomposition at the critical point with simplifications was performed in [1, 2].
Experimental studies of effective enthalpy values were made in {1, 3], Numerical calculations of the de-
composition of sublimating coatings along the generatrix of a sphere were performed for graphite and a
textolite type material in {4, 5].

We will now consider the formulation of the problem of decomposition of an ablative coating along the
generatrix of a blunted solid of revolution. The problem of the decomposition of a thermal protective coat-
ing which does not form a liquid phase reduces to simultaneous solution of the system of boundary layer
equations and the thermal conductivity equation in the solid. Boundary conditions are set at the outer edge
of the boundary layer, at the decomposition front, and within the depths of the solid phase. The conditions
at the decomposition front are derived from the laws of conservation of mass, momentum, and energy,
adapted to a surface of strong discontinuity [6]. For completion of the problem the equations of chemical
equilibrium and conditions defining the kinetics of coating decomposition are used. For materials decom-
posing by pyrolysis, such a condition is
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where K(T) = B exp (— E/RT) is the pyrolysis reaction constant, and S is the decomposition front displace-
ment rate. It may be said that inlight ofthe low thermal conductivity of the material and the sharp depen-
dence of pyrolysis rate on temperature, that decomposition is localized in a narrow subsurface layer and
all chemical reactions may be referred to the body surface. Assuming that 8T /8y > 8T /dx, we will con-
sider the equation for thermal conductivity in the one-dimensional formulation. For the established de~
composition regime the boundary problem describing the propagation of heat within the solid phase has the
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Here y1 =y — St is the coordinate connected with the decomposition front, and A is the heat liberated
upon pyrolysis of a unit mass of the material. Integrating Eq. (1.2), we have a formula for the thermal
flux passing into the solid phase

1

T : ¢
— M%y; = p1S {A + ep, (Ty — T_)] — Aplg K (T)dy (1.3)
@

Further integration of the thermal conductivity equation may be performed with the thin reaction
zone approximation. Using the first two terms of an expansion in a Taylor series of the function 1/T we
obtain the temperature profile within the solid and the relationship between the decomposition rate and
the material surface temperature
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For a surface temperature Ty ~ 800-1000°K (E = 8+ 10* keal/mole, A = 411 cal/g; cpy = 0.4 cal/g -
deg) ko/ky » 1, C/(Ty— T-w) < 1, and thus, consideration of chemical reactions within the depths of the
body has a weak influence on the temperature profile within the solid phase.

Using Eq. (1.3) at yy = 0, we write the boundary conditions on the decomposition front [6] in Dorod-
nitsyn— Lize variables
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Here x, y, are coordinates directed along the generatrix of the solid of revolution and normal to the
body; r is the distance of a point on the body surface from the axis of s{ymmetry; u, v are the projections
of the velocity vector on the axes x and y; I = plt/polg; @ = (ov)g 2¢rle /2/£X is the dimensionless draft
parameter; ¢y, c1* are the mass concentration of the k-th component and the I-th element; mj is the mass
fraction of the I-th element and k-th component; Qk is the heat of reaction for formation of the k-th com-
ponent from N* independent components; or is the effective Schmidt number; hT is the enthalpy of the ideal
gas state, The indices 0 and e denote the surface of the body and the external edge of the boundary layer
while the upper index (1) denotes parameters in the solid phase. The transfer coefficient notation is that
generally employed.

The first equation of the system is a combination of the law of convervation of mass and the equation
for decompositionkinetics. Equation (1.8) is the law of conservation of elements, Equation (1.10) is the
law of conservation of energy at the decomposition front, To this system we must add the equations of
chemical equilibrium for the reactions occurring at the decomposition front
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In the system (1.8)-(1.10) the effective Schmidt number Sy = pp/Dy, appears defined by the effective
diffusion coefficients Dk in the multicomponent mixture; pDj = J;/Ve; [7]. The coefficients of heat mass
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transfer (BhT/aT:)o, (Bci /31)g are obtained by factual solution of the system of boundary-layer equations,

We will divide the problem of determining mass loss parameters into two parts. We shall integrate
the boundary-layer equations with fixed values of draft, temperature, and composition at the decomposition
front. By parametric study of the boundary-layer system of equations it is possible to obtain formulas
approximating the coefficients of heat mass transfer as functions of the defined parameters of the problem.
Using such an approach heat mass trapnsfer in the boundary layer is described by parameters subject to
definition such as the draft @, wall enthalpy, etc. As a result, the problem of determination of mass loss
parameters is reduced to solution of a system of N + 3 nonlinear equations (1.7)-(1,11) for the unknown
quantities 8, o, Ty, cig G =1, ..., Ng). The basic system includes the supplementary equation (1.3) or (1.4)
for definition of the temperature profile in the solid and calculation of the linear displacement rate of the
decomposition front as a result of pyrolysis of the solid phase (1.1), (1.7).

2. We will now consider heat and mass transfer in a laminar boundary layer with arbitrary pressure
gradient distribution in the presence of a draft of some other gas through the body surface. The basic
system of boundary-layer equations was considered in the local self-similarity approximation. This per-
mits examination in the most general form of the dependence of the heat mass transfer coefficients on
pressure gradient, draft, and wall temperature, while not setting concrete flight conditions and the form
of the body.

There exists a large number of studies which indicate the applicability of the local self-similarity
model for calculation of heat mass transfer coefficients even in the case of flows with sharp change in the
pressure gradient [8].

By solving the system of boundary-layer equations [9] for the heat mass transfer coefficients the
following approximate functions are obtained
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Here 0¢*' (o) is the heat-transfer coefficient with a draft of a gas mixture close in its properties to
the gas flowing around the body, while ¢ is a correction for the differences in properties between draft and
flow gases. The parametersmandb are functions of the pressure gradient and draft
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Comparison with numerical solutions shows that in the interval 0.5 2 @ =1, 0= A=1 04 =¢ =1
0.2 =l =1.2 the accuracy of Egs. (2.1)-(2.4) is no less than 5%.

For the case of a draft of a gas mixture with different properties a generalized analogy between the
heat mass transfer coefficients is established in a formula analogous to the case of draft of a mixture with
similar heat capacities [9]
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(2.6)

The functions for determination of the dimensionless heat-transfer coefficient 6y and the generalized
analogy are obtained from the example of a draft into air of gases with various numbers of atoms and var-
ious molecular weights (H,, He, N, CHy, HyO, O, C,H,, HCI, C4Hy, C,H;OH, CFy, Bry), ‘Equation (2.1) is uni-
formly accurate for all draft gases and agrees with calculations of the heat mass transfer coefficients for
the forward critical point [5, 11].
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To calculate the effective Schmidt and Lewis numbers the method of [7] is used. The components
existing in the boundary layer and on the wall maybe divided into four groups, at the limits of which the
binary diffusion coefficients for each group differ by no more than 1%. As a result, for given composition
and draft from the body surface the problem of determining effective diffusion coefficients on the wall
reduces to solution of a system of nonlinear algebraic equations.

The general method of finding mass-loss parameters reduces to solution of Eq. (1.10) by the iteration
method by selection of surface temperature Ty, For a fixed value of Ty from Eq, (1.7) we define the draft
into the boundary layer. The system (1.8), (1.9), (1.11) together with the equations defining the effective
diffusion coefficients and heat mass transfer coefficients (2.1)<2.6) permits calculation of the gas compo-
sition on the wall, and thus determination of the left side of Eq. (1.10).

3. We will consider in further detail the results of teflon mass loss calculations. Teflon (Ftoroplast-
4) is a polymer of tetraflorethylene (C3Fy),, a typical low enthalpy ablative material, It has been established
that teflon decomposition commences at temperatures above 415° C, The thermophysical properties of
teflon are as follows: density p1=2,14 g/cma, thermal conductivity A = (5.5-6) .107* cal/em * sec - deg; heat
of pyrolysis, A = 411 cal/g. The thermal capacity of teflon is temperature dependent and may be calculated
from the equation

cp, = 0.1539 + 3.36-10~* T' cal/g-deg

Teflon decomposition occurs according to the formula (CoHy),p ~>C2F4g, while the pyrolysis reaction
constant is described by the equation

K = B exp (—E/RT), E = 8.3.10% kal/mole B = 3.10* cex~? (3.1)

The composition of the pyrolysis products depends on pressure, however, there are no reliable ex-
perimental data, It is known that at low pressure over the entire temperature range the monomer C,Fy is
formed. In pyrolysis in mixtures with an oxygen excess the final reaction products will be CO, and CFy,
1t follows from analysis of the equilibrium constants of the group of reactions possible that in the surface
temperature range up to 1200° K the monomer appearing as a result of thermal destruction will participate
in two reactions

GoFy 4 0, =2 CO; + CFy

CO, + CF, = CF,0 (3.2)

Thus, in decomposition in a flow of dissociated air on the wall seven components may participate,
03, Ny, CoFy, CFy, COy, CF,0, Ar,

Numerical calculations were performed for the decomposition of a teflon thermal protective coating
on a sphere 1 m in diameter over the Mach number range 10-20 and incident flow pressures p« = 0,001-
0.1 atm. Figures 1 and 2 present typical dependences of surface temperature and decomposition rate
along the generatrix of the sphere for various pressures in the incident flow at M= 15, Curves 1-3 corre-
spond to pressures p = 0.1, 0.01, 0.001 atm, It is evident that with removal from the critical point the
surface temperature and decomposition rate decrease monotonically. Calculations performed show that the
dimensionless decomposition rate &/! ei/ 2 and effective enthale Hep = qo/p1S are constant along the lateral
surface and independent of pressure. The dependence,of @/1, /% on Mach number is shown in Fig. 3. The
results of numerical calculation of the quantity @/ lei 2 in the range 10 < M < 20 may be approximated to
an accuracy of 3% by the formula
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Comparison of the results of this calculation
— | with theoretical and experimental data for the forward
ey, i critical point {1, 2] was made for the effective enthalpy
o 5 2 values. The dependence of effective enthalpy on flight
Fig, 3 velocity is presented in Fig. 4. Also shown are the

data of [2] (curve 1) and the results of experiments
on teflon decomposition in instruments with electric

s arc heating, used in [1]. The dashed line II is the
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¥ computed curve of the present study. From Fig. 4 it
24 / is evident that theory and experiment agree satis-
/% factorily.
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17 d r of the decomposition in the vicinity of the critical
’ 5% . point
05 ///‘ v, Iln/sec S = —3-1—(_)_——2 M ]/F; cm/sec  [R]=cm [P,] ==atm
;5 4 5 £ 7 VE
Fig. 4 The formula approximates the decomposition

rate well over the range of calculated parameters
0.001 = Pw = 0,1 atm and M <12,
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